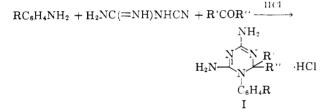
Anthelmintic Agents. 1,2-Dihydro-s-Triazines¹


BARBARA ROTH, ROBERT B. BURROWS, AND GEORGE H. HITCHINGS

The Wollcome Research Laboratories, Rucrosyks Wellcome & Co., Texk-doc, New York

Received Lanuary 11, 1963

A series of 1-aryl-4,6-diamino-1,2-dihydro-s-triazines which contain *ortho*-substituents in the benzene ring, or bulky groups in the 2-position of the dihydrotriazine ring, is described. Such compounds have been found to have high anthelmintic activity against intestinal parasites and negligible microbiological activity. This is in contrast to the related compounds without the sterically hindering substituents, which have been found by various groups in the past to be potent antimicrobial agents.

In the course of some chemical studies with a series of 2,6-diamino-5-(orthc-substituted phenyl)-4,5-dihydropyrimidines,² it became of interest to prepare some of the corresponding dihydrotriazines for comparative purposes. Carrington, Crowther, and co-workers³⁺⁵ and Modest and co-workers⁶⁻⁸ have prepared a large number of 1-aryl-4,6-diamino-1,2-dihydro-s-triazines by the condensation of biguanides with ketones or aldehydes, or by a one step reaction in which aromatic amines are heated with dicyandiamide in the presence of ketones or aldehydes. 1-(p-Chlorophenyl)-4,6-di-

amino-1,2-dihydro-2,2-dimethyl-s-triazine (I, R = p-Cl, R' and R'' = CH₃) was found by the investigators at the Imperial Chemical Industries, Ltd., to be the active metabolite of the antimalarial drug chlorguanide (N¹ - (p - chlorophenyl) - N⁵ - isopropylbiguanide).^{3,9} A considerable number of compounds of this type have been demonstrated to possess activity against experimental avian and rodent malaria,^{5,10} activity against coccidiosis in chicks,^{11,12} anti-folic acid activity in microbiological systems,^{6,13-15} antibacterial activity against certain pathogenic bacteria,^{16,17} antitumor activity

(D. Presented in part at the 137th National Meeting, American Coemical Society, Cleveland, Ohio, April, 1960.

- (2) G. H. Hitebings, P. B. Russell, and N. Whittakev, J. Chem. Soc., 1019 (1956).
- (3) H. C. Carcington, A. F. Crowther, D. G. Davey, A. A. Levi, and F. L. Rose, Nature, 168, 1080 (1951).
- (4) H. C. Carrington, A. F. Crowther, and G. J. Stacey, J. Chem. S.c., 1017 (1954).

(5) A. F. Crowther, British Patent 709,906 (1954); Cheba, Abstr., 49, 90466 (1955).

- (6) E. J. Modest, G. E. Foley, M. M. Peelort, and S. Facher, J. sin, Chem. Soc., 74, 855 (1952).
- (7) E. J. Modest, J. Org. Chem., 21, 1 (1956).
- (8) E. J. Modest and P. Levine, (b(d., 21, 11 (1956).

(9) A. F. Crowthee and A. A. Levi, Brit. J. Pharmacol., 8, 93 (1953).
 (10) R. I. Hewitt, W. S. Wallace, A. Gunable, E. White, and J. H. Wil-

FIGURE 1. HOWICE, W. IS. Waharee, A. Collicole, E. WE Batos, Am. J. Trop. Med. Hyg., 3, 225 (1954).

(11) R. E. Lux, Antibiol. Chemotherapy, 4, 971 (1954).

(12) S. Schalit and R. A. Cutler, J. Org. Chem., 24, 573 (1952)

(13) G. E. Foley and E. J. Modest, "Proc. 52nd Gen. Meeting, Soc. Am. Bact.," Boston, Mass., May 1, 1952, p. 63.

(14) G. E. Foley, Proc. Soc. Expl. Bool. Med., 83, 733 (1953); (b(d., 83, 740 (1953);
 G. E. Foley and P. L. Watson, P.(d., 83, 742 (1953).

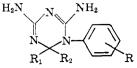
(15) G. E. Foley, Thesis, Universiteit van Austerdam, Nederland, June, 1054.

(16) M. W. Fisher and L. Doub, Blochem, Pharmacol., 3, 10 (1959). (17) G. E. Falay, E. I. Madast, J. P. Cataldo, and H. D. Bilay, *ibid.* 3

(17) G. E. Foley, E. J. Modest, J. R. Cataldo, and H. D. Riley, *ibid.*, 3, 31 (1959). against certain experimental tumors,^{18,19} and activity against experimental murine toxoplasmosis,²⁰ In all of these studies the compounds which were particularly active contained *meta* or *para* substitution in the benzene ring; those containing *artho* substitution, particularly di-*artha* substitution, were almost completely inactive. The more active compounds also had small alkyl groups, such as dimethyl, or one longer unbranched alkyl group in the 2-position of the triazine ring, while bulky groups, such as pentamethylene, usually led to low activity.

The two compounds which were initially chosen for our laboratory study of artho-substituted dihydrotriazines were of the formula I where R = a-ethyl or $a_i a$ dimethyl, and R' and R'' = methyl in each case.These compounds were subjected to routine pharmacological screening. As expected, they showed no activity in the microbiological assay with Lactobacillus casei, nor in the adenocarcinoma 755 tumor screen. However, in determining the acute toxicity, the observation was made that the oral LD_{50} was greater than 10 times the LD_{5a} by the parenteral route. This prompted the suggestion that since the compounds were evidently not well absorbed from the intestinal tract, they might possibly have some utility against intestinal parasites. Accordingly, they were screened against Sypha*cia obrelata* infestations in mice, and it was found that at oral dosages of 300 mg. kg. day for 3 days, over 90%of the worms were cleared, with no apparent adverse effects on the mice. Foley²⁵ had demonstrated that there was a direct relation between increasing steric hindrance and decrease in activity as microbiological inhibitors. It became of interest then to see whether this pattern was followed with regard to intestinal parasites. Accordingly, the chlorguanide metabolite was screened against Syphacia obvelata, and sorprisingly. it was found to be practically devoid of activity. These results led to the synthesis of a series of ortho-substituted phenyldihydrotriazines. A number of meta- and parasubstituted derivatives were prepared for comparison. The substituents in the 2-position of the triazine ring were varied also to include some of a bulky nature. All compounds were screened routinely for microbiological activity against Lactobacillus casei, as well as against intestinal parasites.

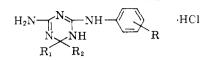
Initially all compounds were screened *rs. Syphacia*


(18) S. Farber, I. Diamond, G. Foley, and E. J. Modest, Am. J. Inthibit., 28, 559 (1952).

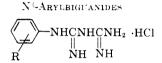
⁽¹⁹⁾ S. Farber, G. Foley, V. Downing, R. Appleton, and J. Kiug, Proc. Ast. Assoc. Cancer Res., 1, 15 (1953).

⁽²⁰⁾ W. D. Winter, Jr., and G. E. Foley, Antibiot. Cherotherapy, 6, 400 (1956).

TABLE I


1-ARYLDIHYDROTRIAZINES

Compd.					uents(R)		Empirical	М.р.,	Carb	on, %	Hydro	gen, %		gen, %
No. 1	$2,2$ -Substituents(R_1R_2) H, CH ₃	2 C₂H₅	3	4	5	6	formula	°C.			Caled. 6.77	found 6.89	Calca.	round
11	$(CH_{s})_{2}$	C2H5 C2H5					C12H17N5 · HCl C13H19N5 · HCl	277 - 279 209 - 211	55.82 55.41	$54.17 \\ 55.26$	7.15	7.04	24.86	24.70
III	(CH ₃) ₂	C3H7-n					$C_{14}H_{21}N_5 \cdot HCl$	210	56.85	57.04	7.50	7.36		23.45
1 V	(CH ₃) ₂	$C_4H_{\theta}-n$					$\mathrm{C}_{15}\mathrm{H}_{23}\mathrm{N}_5\cdot\mathrm{HC1}$	191	58.14	57.95	7.81	7.70		
V Vl	$(CH_3)_2$ $(CH_3)_2$	OCH₃	an				$C_{12}H_{17}N_{b}O$	226-229	58.28	58.38	6.93	7.18	28.32	28.27
vii Vii	(CH ₃) ₂ (CH ₃) ₂	CH₃	CH3 CH3				C12H17N6 · HCl C13H19N6 · HCl	$\begin{array}{c} 212 \\ 220 \end{array}$	53.82 55.41	53.81 55.34	6.77 7.15	6.65 7.19		
V111	(CH ₃) ₂	CH:	Cl				C12H16CIN5 · HCl	218-220	47.69	48.13	5.67	5.59	23.18	22.92
1X	$(CH_3)_2$	CH₃		CH_3			C13H19N5 HCl	211-212	55,41	55.22	7.15	7.10		
X	$(CH_8)_2$	CH3		Cl			$C_{12}H_{16}ClN_{5}\cdot HCl$	219 - 220	47.69	47.97	. 67	5.78	00	07 00
X1 X11	(CH3)2 (CH3)2	OCH₃ CH-		NO_2	CH.		$C_{12}H_{16}N_6O_3 \cdot HCl$	220-222	43.84	44.22	5.21	5.35 7.12	25.56 24.85	25.29 24.42
XIII	(CH ₃) ₂	CH₃ CH₃			CH₃ Cl		$\begin{array}{c} C_{13}H_{19}N_5 \cdot HCl \\ C_{12}H_{16}ClN_5 \cdot HCl \end{array}$	228 220-223	55.41 47.69	55.89 48.04	$7.15 \\ 5.67$	5.61		23.58
XIV	(CH ₃) ₂	CH3			C3H7-i		C15H23N5 · HCl	211	58.14	58.23	7.81	7.79		
XV	(CH ₃) ₂	OCH₃			Cl		$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{ClN}_{5}\mathrm{O}\cdot\mathrm{H}\mathrm{Cl}$	218-220	45.29	45.14	5.39	4.83		21.99
XV1	$(CH_3)_2$	CH_3	_			CH_3	$C_{18}H_{19}N_{b} \cdot HCl$	220	55.41	55.55	7.15	7.20	24.86	24.71
XV11 XVIII	(CH ₃) ₂ (CH ₃) ₂	CH	CH₃	our	CH3		$C_{18}H_{19}N_{5} \cdot HCl$	212	55.41	55.13	7.15	6.84	00 69	23.32
XIX	$CH_{3}, C_{2}H_{5}$	CH_3 C_2H_5		CH₃	CH_{3}		$C_{14}H_{21}N_{5} \cdot HCl$ $C_{14}H_{21}N_{5} \cdot HCl$	$223 \\ 195 - 196$	56.85 56.85	$57.28 \\ 56.54$	$7.50 \\ 7.50$	7.43 6.83	20.00	20.02
XX	CH ₃ , C ₂ H ₅	CH				CHa	$C_{14}H_{21}N_5 HCl$	210	56.85	56.74	7.50	7.39		
XX1	CH2, C3H7-n	C_2H_5					$C_{15}H_{28}N_5 \cdot HCl$	200-201	58.14	58.55	7.80	7.84		
XX11	H, C_6H_{18} -n	C_2H_5					$C_{17}H_{27}N_{b}\cdot HCl$	222	60.41	60.21	8.36	8.16	20.72	20.31
XX111 XX1V	H, C ₉ H ₁₉	C_2H_5					$C_{20}H_{33}N_{b} \cdot HCl$	243 - 244	63.15	63.30	9.11	9.15		
XXV	$-(CH_2)_4-$ $-(CH_2)_5-$	C₂H₃ C₂H₅					$C_{15}H_{21}N_5 \cdot HCl$	224	58.52	58.82	7.20	6.77 7.30		
XXVI	$-(CH_2)_5$	Br					C16H25N5 · HCl C14H18BrN5 · HCl	$\begin{array}{c} 224 \\ 235 \end{array}$	$\begin{array}{c} 59.70 \\ 45.11 \end{array}$	$\frac{59.50}{45.39}$	7.51 5.14	4.98	18.79	18.38
XXVII	(CH ₂) ₅	CH3				CH3	C16H23N5 · HCl	295	59.70	59.50	7.51	6.67		21.63
XXVIII	$-CH_2CH(CH_2)_3-$	Br					C15H20BrN5 HCl	199	46.58	46.90	5.47	5.76	18.11	17.92
XXIX	$\overset{ }{_{\mathrm{CH}_3}}$ 			Cl			C15H20ClN5·HCl	210					20.46	20.42
XXX	$\begin{array}{c} CH_3 \\ -CH_2CH_2CHCH_2CH_2 \\ \end{array}$						$\mathrm{C}_{15}\mathrm{H}_{21}\mathrm{N}_{5}\cdot\mathrm{HCl}$	229	58.52	58.46	7.21	7.26		
XXX1	$-CH_2CH_2CH_2CH_2CH_2$	СH3					C16H23N5 · HCl	217218	59.70	59.5 0	7.51	6.67	21.76	21.63
XXXII	CH ₃ CH ₂ CH ₂ CHCH ₂ CH ₂	C₂H₅					C ₀₇ H ₂₅ N ₅ ·HCl	217	60.78	61.24	8.00	7.87	20.85	20.54
× × × 111		_												
XXXIII		Br					C _{1b} H ₂₀ BrN ₅ ·HCl	226	46.58	46.50	5.47	5.28	18.11	18.17
XXX1V	$-CH_2CH_2CH_2CH_2CH_2-$	Cl					$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{ClN}_5\cdot\mathrm{H}\mathrm{Cl}$	209	52.63	52.60	6.18	5.88	20.46	19.81
XXXV	$-CH_{2}CH_$			CH₃			C16H23N6 · HCl	215	59.70	59.44	7.51	7.42	21.76	21.36
XXXVI	CH3 —CH2CH2CHCH2CH2—			Cl			$C_{15}H_{20}ClN_{\delta}\cdot HCl$	229	52.63	52.55	6.18	6.07		
XXXVII	 CH3 —CH2CH2CH2CH2—			Du			6 H 5 H H ()							10.00
AAAVII				Br			C15H20BrN5 · HCl	210	46.58	46.66	5.47	5.10	18.11	18.28
XXXVIII	CH ₂ CH ₂ CH ₂ CH ₂ H ₂	CH3				CH₃	$C_{17}H_{25}N_5\cdot HCl$	222-224	60.78	60.55	8.00	7.43	20.85	20.62
XXXIX	$-CH_2CH_2CH_2CH_2CH_2$	Cl			Cl		$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{Cl}_2\mathrm{N}_5\cdot\mathrm{HCl}$	200	47.82	47.52	5.35	5.41		
\mathbf{X} L	CH3 —CH2CH2CHCH2CH2—		Cl	Cl			$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{Cl}_{2}\mathrm{N}_{5}\cdot\mathrm{H}\mathrm{Cl}$	186-187	47.82	48.24	5.35	4.97	18.59	18.52
	$\mathbf{C}\mathbf{H}_{\mathtt{3}}$													


obvelata in a 3-day test, starting at a dosage of 300 mg./ kg. The results of this test are shown in Table VI, in which the compounds are listed roughly in decreasing order of activity. It will be seen at a glance that in almost every instance the compounds with the greatest anthelmintic activity are those with bulky sub-

stituents in the 2-position of the dihydrotriazine ring, or else bulky *ortho*-substituents in the benzene ring. Conversely, Table IX, which lists microbiological inhibition in increasing order of activity, shows that *ortho*substituted phenyl derivatives, and the derivatives with bulky 2-substituents, have the least inhibitory

					~ •1								
Compd. no.	2,2-Substituents(R1, R2)	Benze 2	ne su 3	bstitue 4 5	nts(R) 6	Empirical formula	М.р., °С.	Carb Caled.	on, ½ Found		gen, % Found		gen, % Found
XLI	$CH_2CH_2CHCH_2CH_2$					$C_{15}H_{21}N_5 \cdot HC)$	230	18 .52	58.44	7.21	7.02	22.75	22.58
XL11	CH3 —CH2CH2CHCH2CH2—	0.11				(1) 17 11 (N			00 =0	0.60			
ALII	-CH2CH2CHCH2CH2-	C_2H_6				$C_{17}H_{26}N_b \cdot HC1$	246 - 247	60.78	60.75	8.00	7.94		
	CH ₂												
XLHI	CH ₂ CH ₂ CHCH ₂ CH ₂ -	Br				C_{15} H ₂₀ Br N ₅ · HC1	226	46.58	46.71	5.47	5.50	18.11	17.76
XLIV	CH_{3} CH ₂ CH ₂ CHCH ₂ CH ₂			a		C15H2cCIN5 · HCI	262	52.63	52.87	6.18	6.18	20.46	19.99
						010112(01210-11(01	-04	.)2100	02.01	0.10	0.10	20.40	10.50
	CH_{0}												
XLV	CH ₂ CH ₂ CHCH ₂ CH ₂	CH:			CH_3	$C_{17}H_{25}N_5 \cdot HCl$	266	60.78	60.31	8.00	7.69		

Table III

					Anal	yses	
	Benzene	Empirical			on, %	←Hydroge	9n, %
Compd. No.	substituents(R)	formula	M.p., ⁵ C,	Caled.	Found	Calcd.	Found
XLVI	$2\text{-}\mathrm{C}_{2}\mathrm{H}_{\delta}$	$C_{10}H_{15}N_5 \cdot HCl$	204	49.73	49.60	6.67	6.55
XLVII	$2,6-(CH_3)_2$	$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{N}_5\cdot\mathrm{HCl}$	218 - 219	49.73	49.72	6.67	6.43
XLVIII	$2_{i}4_{i}5$ -(CH ₃) ₃	$\mathrm{C}_{\tau}(\mathrm{H}_{1\overline{\tau}}\mathrm{N}_{5}\!\cdot\mathrm{HCl}$	228	51.65	51.77	7.09	6.81

activity, in confirmation of the earlier data of Foley¹⁵ and the I.C.I. group. Thus, from a biological point of view, the anthelmintic dihydrotriazines may be considered to form a different class of compounds from the antimalarial dihydrotriazines. This difference is qualitative in character, and can probably be explained best by increasing steric hindrance associated with more bulky ortho substitution. This would gradually impose a nearly perpendicular and increasingly rigid arrangement of the two rings about their common axis. Such a change in conformation might well block the action at enzyme sites which normally causes the antifolic activity, and by the same token might create some new type of interference associated with the anthelmintic action.

ĊH3

The mechanism by which the dihydrotriazines exert their effect against the pinworms is not known. However, these compounds have the advantage over some other anthelmintic agents that they are active against immature, as well as mature, forms of the parasite. Detailed studies which illustrate this effect were carried out on one of the more active derivatives (XXXVI). and are described by Burrows and Hunt.²¹

In seeking the more active compounds of this series, it was considered advisable to determine whether the dihydrotriazines would be useful in a single dose treatment. The activity against immature forms of the parasite indicated that this might well be the case. Table V lists the results of these tests, which show that several members of this series of compounds are indeed sufficiently active to clear all parasites in a single dose. It was difficult to choose among these closely related compounds on the basis of the anthelmintic screen alone. However, an investigation of the acute toxicities of these compounds left no doubt as to which was the compound of choice. Selected toxicity data are shown in Table X. Although the toxicities obtained by parenteral administration are quite similar, this is not true of oral administration. One compound [XXXVI, 1-(p-chlorophenyl)-4,6-diamino-1,2-dihydro-2,2-(3-methylpentamethylene)-s-triazine hydrochloride] stands out as being unique in its lack of toxicity. It was found physically impossible to administer sufficient drug to mice to kill them (except by suffocation). This substance has a solubility of approximately 0.2%in water at room temperature, so, although it is less soluble than some of the other derivatives, it is muunlikely that insolubility is an adequate explanation of its lack of toxicity.

The dihydrotriazines were screened against a wide variety of intestinal parasites in addition to Syphacia obvelata. Although they were found active against the related pinworm Aspiculuris tetraptera in mice, they were relatively inactive against hookworms (Ancylostoma caninum), ascarids (Ascaris lumbricaides, Toxocara cati, Toxascaris leonina), whipworms (Trichuris rulpis), trichostrongyles (Nippostrongylus muris, Nematospiroides dubius), and nodular worms (Ocsophagostomum sp.), and were inactive against four species of tapeworms.

Carrington⁴ and Modest⁷ have described the irreversible rearrangement of the aryldihydrotriazines in alkali to yield arylaminodihydrotriazines. The products were found devoid of microbiological activity. We were interested in preparing the anilino isomers of a few of the more active derivatives described here, to determine whether anthelmintic activity might be

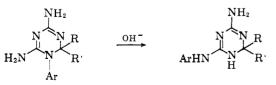

Compd.	<u></u>	— — — Dihydrotriazine substituen	its	Solvent		iolet absorpt	ion spectra	l
no.	1	2,2	6	or p ${f H}$	$\lambda_{max}, m\mu$	$\epsilon \times 10^{-1}$	$\lambda_{min}, m\mu$	e × 10⁻₽
XXX	$\mathrm{C}_{6}\mathrm{H}_{\mathfrak{d}}$	$-CH_2CH_2CHCH_2CH_2-$	NH_2	7.02^{b}	242	9.41	229	7.55
XLI	Н	$\begin{array}{c} CH_3\\CH_2CH_2CHCH_2CH_2\\ \\ \\ \end{array}$	C₅H₅NH←	7.02	256	15.3	229	7.84
XXXIII	Br	CH_3 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	NH_2	7.02	240	9.75	235	9.7 0
XLIII	H	CH_3 CH ₂ CH ₂ CHCH ₂ CH ₂	Br	7.02	246.5	12.9	233	11.3
XXXII	C_2H_5	CH_3 CH ₂ CH ₂ CHCH ₂ CH ₂	NH ₂	7.02	241	9.70	229	8.23
XLII	H CH3	CH_3 CH ₂ CH ₂ CHCH ₂ CH ₂	C ₂ H ₅	7.02	245	13.1	229	10.4
XXXVIII		CH_3 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	\mathbf{NH}_2	7.02	236	12.0	230	11.7
XLV	ČH₃ H	CH_3 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	CH ₃ —NH— CH ₃	7.02	241	12.3	230	11.0
XXXVI	Cl	$\begin{array}{c} \mathrm{CH_2CH_2CH_2CH_2-}\\ \\ \mathrm{CH_3} \end{array}$	NH₂	0.1 N HCl 7.02 0.1 N NaOH	$\operatorname{Sh}_{\mathfrak{c}} \begin{array}{c} 242\\ 241\\ \mathfrak{c} \end{array}$	$7.25\\11.2$	234	10.8
XLIV	Н	$\begin{array}{c}\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2$	CI-V-NH-	0.1 N HCl 7.02 0.1 N NaOH	$259 \\ 261 \\ 222.5 \\ 261$	$15.0 \\ 17.5 \\ 8.74 \\ 17.8 $	230 229 230	8.38 7.95 8.38
Ref. 7	Cl-	$(CH_3)_2$	\mathbf{NH}_2	7.02	$\frac{261}{241}$	$\frac{17.8}{13.4}$	232	12.3
Ref. 7	Н	$(CH_3)_2$	Cl-	7.02	256	18.2	227	9.36

TABLE IV

ULTRAVIOLET ABSORPTION SPECTRA OF SOME 1-ARYLDIHYDROTRIAZINES AND THEIR 6-ARYLAMINO ISOMERS^a

^a Spectra were determined at a concentration of 10 mg./l., with a Beckman DU spectrophotometer. ^b Sørensen phosphate buffer. ^c Slow isomerization at room temperature; initial reading (30°) shows no maximum; sloping curve has slight shoulder with mid-point 250 m μ ($\epsilon \times 10^{-3} = 5.7$).

retained on isomerization, and also to determine whether or not there might be a difference in ease of isomerization between the different types of derivatives. The new compounds which were characterized are described in Table II. Table VII lists their anthelmintic activities, which were found to be negligible.

Thus, the 4,6-diamino configuration appears to be required for both microbiological and anthelmintic activity. A few of the intermediate biguanides (Table III) were also tested for anthelmintic activity and found lacking in interest (Table VIII).

Carrington⁴ and Modest⁷ also described the change in ultraviolet absorption spectra which occurs on isomerization of the dihydrotriazines, using 1-(*p*-chlorophenyl)-4,6-diamino-1,2-dihydro-2,2-dimethyl-s-triazine as an example. In this case, λ_{max} changes from 241 to 256 mµ at pH 7, and the molecular extinction coefficient is also markedly increased (see Table IV), so that it is easy to follow the course of the isomerization. It was found that when bulky groups were introduced into the 2-position of the dihydrotriazine ring, as with XXXVI, the change in spectrum was even more marked; λ_{max} shifted from 241 to 261 m μ , with a correspondingly large hyperchromic shift. Compound XXXVI was also found to isomerize at almost 3 times the rate of the 2,2-dimethyl analog, reflecting decreased stability of the original diamino configuration when the bulky groups are present.

When the diaminodihydrotriazines contained ortho substituents in the benzene ring, the change in spectrum upon treatment with alkali was found to be much less marked. The shift in λ_{max} was only about 5 m μ , and the increase in extinction coefficient was correspondingly lessened. The data of Table IV illustrate these changes. Whereas practically all of the diaminodihydrotriazines with meta or para substitution had λ_{max} = 241-242 m μ , some of the ortho-substituted compounds had only slight maxima or shoulders at about 235 m μ . After treatment of the compounds with alkali, the maxima shifted only to about 241 m μ , so that an

Compd.			Dose, ^u		Av. $\%$
No. or ref.	2,2-Substituents	Benzene substituents	mg./kg.	Cured (treated	eliminat
XXXVI	$(CH_2)_2CH(CH_2)_2$	4-Cl	1000	3/3	100
			750	3/3	100
	CH_3		600	23/30	52
			500	19/24	99
			400	23/30	89
			300	17/30	83
			200	7/25	49
T) (=			100	2/26	27
Ref. 7	(CH ₂) ₆	4-Cl	600	6	100
			500	5/6	98
			400	6/6	100
			300	5/6	99+
			200	3/6	90
XXXVIII	$-(CH_2)_2CH(CH_2)_2-$	$2_{1}6-(CH_{3})_{2}$	600	6/6	100
	1		500	6/6	100
	$\mathrm{CH}_{\mathfrak{z}}$		-400	8/9	913
			300	4/6	93
			200	2/6	67
XXIX	$-CH_2CH(CH_2)_3$	4-Cl	500	1/5	9G
			400	1/6	<u>7</u> 9
	CH_3		300	1/3	6ti
XL	$-(CH_2)_2CH(CH_2)_2$	$3,4-Cl_2$	-400	6/6	190
			309	1/6	68
	CH_2		200	0/6	35
			100	0/6	13
XXXIII	$(CH_2)_2CH(CH_2)_2$	2-Br	-100	2/3	99
X X YIII	CH_3 CH ₂ CH(CH ₂) ₃	2-Br	400	5/6	90
XXVIII		2-D1	400 300	$\frac{5}{6}$	40
XXXV	$\begin{array}{c} \mathrm{CH}_{3} \\(\mathrm{CH}_{2})_{2}\mathrm{CH}(\mathrm{CH}_{2})_{2} \\(\mathrm{CH}_{2})_{2} \\(CH$	4-CH3	400	2/3	93
XXXII	CH ₃		.500	0/3	98
лллп	$-(CH_2)_2CH(CH_2)_2$	$2-C_2H_b$			
			400	0/3	$63 \\ 82$
1)	CH ₃		300	275	
Ref. 5, and 7	(CH ₂)_	4-Cl	500	$\frac{2}{5}$	71 78
			400	1/6	- 0 55
* * \ * \ * \ *	// ITT - \ / ITT// ITT - \	·· - (1)	300	0/6	55 73
XXXIX	$-(CH_2)_2CH(CH_2)_2-$	$2,5-Cl_2$	$\frac{400}{300}$	$rac{0/6}{2/6}$	7 5 82
XXXI	CH_3 (CH ₂) ₂ CH(CH ₂) ₂	2-CH ₃	500	1/3	67
			400	$\frac{2}{3}$	82
	CH_{3}		300	0/6	36
XXX	$(CH_2)_2CH(CH_2)_2$		400	2/6	66
	1		300	$\frac{1}{6}$	$\overline{c}O$
XXXVII	CH_3 (CH_2) ₂ $CH(CH_2)_2$	4-Br	400	0, 6	39
	4 		300	1/6	38
XXVI	CH ₃ —(CH ₂) ₆ —	2-Br	400	0/6	19
			300	076	15
XXXIV	$(CH_2)_{2}CH(CH_2)_{3}$	2-Cl	$\frac{400}{300}$	376 076	$\frac{63}{29}$
	ĊH3				
Ref. 7 hydrochloride salt.	$(CH_3)_2$	2-Br	400	0/3	t3

TABLE V

arylamino derivative could easily be mistaken for a diaminodihydrotriazine. All the *ortho* substituted derivatives were therefore examined for identity by heating in 0.1 N sodium hydroxide on the steam bath and observing whether or not a spectral shift occurred. In a few instances of doubt, biological activity was also used as a criterion for structure. This was use-

ful with XXVII, for example, where even the melting point did not change on isomerization, and the spectrum changed from a slight indistinct peak at 236 m μ to another slight indistinct peak at 241 m μ (ϵ changed from 9700 to 13,200). In this case the alkali-treated material was completely inactive against pinworms, whereas the original material was quite active.

TABLE VI

ANTHELMINTIC ACTIVITY OF 1-ARYLDIHYDROTRIAZINES V3. Syphacia obvelata in Mice. Three Dose Tests

Compd. no. or ref.	2,2-Substituents Benz	ene substituents	Dose, ^a mg./kg./day	Cured/ treated	Av. % eliminated
XXXVI	$-(CH_2)_2CH(CH_2)_2-$	4-Cl	300	2/2	100
				,	
	CH_3				
XXIX	$-CH_2CH(CH_2)_3$	4-Cl	500	6/6	100
	 CH₃		400	12/12	100
			300	4/6	99
XXXII	$-(CH_2)_2CH(CH_2)_2-$	$2-C_2H_5$	500	$\frac{2}{3}$	98
			400	$\frac{2}{3}$	97 07
3/3/11	CH3	0.011	300	3/5	97 100
XXV	$-(CH_2)_5$	$2-C_2H_b$	300 200	$\frac{4}{4}$ $1/4$	100 95
			100	1/4 1/10	95 73
XXIV	(CH ₂)4	$2-C_2H_5$	300	$\frac{1}{10}$ $2/4$	83
AAIV	-(0112)4	2-02115	200	$\frac{2}{4}$ 2/4	84
			100	$\frac{2}{1}$	76
Ref. 7	$-(CH_2)_{\delta}$	4-Cl	300	$\frac{3}{2}$	97
	(0112)5	1 01	200	0/2	95
			100	0/2	58
XXVII	(CH ₂) ₆	$2, 6-(CH_3)_2$	300	1/6	66
	(- - /)	, , , ,-	200	1/2	97
			100	1/2	98
XXI	CH_3 , C_3H_7-n	$2-C_2H_5$	300	2/2	100
			200	2/2	100
			100	0/2	21
IV	$(CH_3)_2$	$2-C_4H_9-n$	300	2/4	99
			200	1/6	66
			100	0/6	41
XX	CH_3 , C_2H_5	$2,6-(CH_3)_2$	300	0/2	98
			200	0/4	25
			100	0/2	52
XXXI	$-(CH_2)_2CH(CH_2)_2-$	2-CH_s	500	3/3	100
	CH_3		400	3/3	100
		0.001	300	3/9	81
II	$(CH_3)_2$	$2-C_2H_{\mathfrak{s}}$	300	$\frac{2}{6}$	$\frac{90}{71}$
			$\frac{200}{100}$	$\frac{0}{4}}{0}{6}$	61
XVI	$(CH_3)_2$	$2,6-(CH_3)_2$	300	0/4	93
AVI	(0113)2	$2,0-(0,113)_{2}$	200	0/4 0/2	93 97
			100	0/2 0/2	19
XIX	CH_3 , C_2H_5	$2-C_2H_5$	300	$\frac{3}{2}/4$	90
	0113, 02113	- 02223	200	0/2	45
			100	0/2	17
XXII	H, $C_{\mathfrak{s}}H_{13}$ -n	$2-C_2H_5$	300	0/2	93
			200	0/2	46
VII	$(CH_3)_2$	$2,3-(CH_3)_2$	300	0/2	80
XIV	$(CH_3)_2$	2-CH3-5-C3H7-iso	300	1/4	78
			200	0/2	20
			100	0/2	4
XXIII	$H, C_{\theta}H_{I\theta}$	$2-C_2H_5$	300	0/2	78
Ref. 7	$(CH_3)_2$	2-C1	300	0/2	77
XXVII	$(CH_3)_2$	$3,5-(CH_3)_2$	300	0/2	75°
Ref. 5, 7	$-(CH_2)_4$	4-Cl	500	10/10	100
			400	9/9	100
VIIII		0.4 = (OII)	300	3/9	61 704
XVIII VIII	$(CH_3)_2$	$2,4,5-(CH_3)_3$	300 300	$\frac{0}{4}$	73 ^d 67
$\frac{V111}{\text{Ref. 8}}$	$(CH_3)_2$ H, C ₆ H ₁₃ -n	2-CH₃-3-Cl 4-Cl	300	$\frac{2}{4}}{0}{2}$	67 70
IX	$(CH_3)_2$	$\frac{4-01}{2,4-(CH_3)_2}$	300	$\frac{0}{2}$ 0/2	70 67
XV	$(CH_{3})_{2}$ $(CH_{3})_{2}$	2,4-(CH ₃) ₂ 2-OCH ₃ -5-Cl	300	$\frac{0/2}{0/2}$	66
	(200	$\frac{0/2}{1/2}$	66
Ref. 7	$(CH_3)_2$	2, 4 -Cl ₂	300	0/4	65
		, -	200	0/2	34
VI	(CH ₃) ₂	$3-CH_3$	300	0/2	62°
V	(CH ₈) ₂	2-0CH3	300	0/2	61
			200	0/2	54
XIII	$(CH_{3})_{2}$	2-CH ₃ -5-Cl	300	0/4	52

TABLE VI (Continued)

Compd. no. or ref.	2,2-Substituents	Benzene substituents	mg./kg. day		
Ref. 5	$(CH_{3})_{2}$	4-OCH ₃	300	0/2	45
Ref. 7	$(CH_3)_2$	$2, 5-Cl_2$	300	0/2	41
III	(CH ₃):	$2-C_{3}H_{7}-n$	300	0/2	-40
Ref. 5, 7	$(\mathbf{CH}_3)_2$	$4-CH_3$	300	0/2	40
XI	$(CH_3)_{\mathcal{C}}$	$2-OCH_3-4-NO_2$	300	0/2	22
			200	0/2	54
Ref. \overline{c}	(CH ₃) ₂	$2-CH_3$	300	0/2	34
XII	$(CH_{3})_{2}$	$2,5-(CH_3)_2$	300	0/2	29
Γ	H, CH ₃	$2 - C_2 H_5$	300	0/2	26
Ref. 3, 4, 5, 7	$(\mathbf{CH}_3)_2$	4-Cl	300	0/2	21
X	$(CH_{3})_{2}$	2-CH ₃ -4-Cl	300	0/2	19
Ref. 5, 7	$(\mathbf{CH}_3)_2$	3-C1	300		e
Ref. 5	$(CH_3)_2$	$3,4-(CH_3)_2$	300	_	
Ref. 3, 5, 7	$(CH_3)_2$	3_14 -Cl ₂	300		<i>v</i>
As hydrochloride sult	b One death Weight loss	d Many worms disint orruted	6 Diarrhau	/ Weight loss	diarrhaa 1 daath

" As hydrochloride salt. b One death. C Weight loss. Many worms disintegrated. Diarrhea. Weight loss, diarrhea, 1 death. ⁹ Weight loss, diarrhea.

TABLE VII

ANTHELMINTIC ACTIVITY OF 6-ARYLAMINODIHYDROTRIAZINES vs. Syphacia Obvelata in Mice. Single Dose Tests.

Compd. no.	2.2-Substituents	Benzene substituents	Dose, ing./kg.ª	Cured/ treated	Av. ½ eliminated
XLI	-CH ₂ CH ₂ CHCH ₂ CH ₂ -		400	0/6	34
	$ _{CH_3}$		300	0/6	20
XLII	-CH ₂ CH ₂ CHCH ₂ CH ₂	$2-C_2H_3$	400	0/6	32
	$ _{CH_3}$		300	0/6	44
XLIII	$-CH_2CH_2CH_2CH_2-$	2-Br	400	0/3	3
XLIV	$\begin{array}{c} \mathrm{CH}_{3} \\ -\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}\mathrm{CH}_{2}\mathrm{CH}_{2} \\ \\ \mathrm{CH}_{3} \end{array}$	4-Cl	400	0/3	3
XLV	$-CH_2CH_2CHCH_2CH_2-$	$2,6-(CH_3)_2$	400 300	$\frac{1/6}{0/6}$	$\frac{57}{3}$

" As hydrochloride salt.

Compound XXXVI has been subjected to extensive authelmintic and pharmacological investigation. It has been found active against the pinworm of man, Enterobius vermicularis, and has undergone extensive clinical testing. The results of these tests will be published elsewhere.

Experimental²²

1-Aryl-2,2-dialkyl-4,6-diamino-1,2-dihydrotriazines.-These compounds were prepared by the method of Modest⁷ from the corresponding anilines, plus a ketone or aldehyde, and dicyandiamide, in the presence of slightly more than one equivalent of HCl. New derivatives are characterized in Table I. Results followed the pattern of Modest's description very closely. The products normally precipitated from the reaction mixture in 30 to 90% yields in the form of their hydrochloride salts. When no precipitate was formed, ether was added to precipitate the product. No attempts was made to determine absolute yields by investigation of the mother liquors. Products were normally recrystallized from ethanol, water, or mixtures of the two solvents. In a number of instances, the reactions were unsuccessful with hindered ketones or amines under a variety of conditions. This was the case, for example, with 2-methylcyclohexanone when reacted with dicyandiamide and p-chloroaniline. Other ketones which did not react satisfactorily, either in the 3 component synthesis or with the intermediate biguanide, included diethyl ketone with o-ethylaniline or 2,6-dimethylaniline, heptaldehyde

with 2,6-dimethylaniline, undecylaldehyde with o-ethylaniline, methyl propyl ketone with 2,6-dimethylaniline, ethyl butyl ketone and methyl hexyl ketone with p-chloroaniline, and 3-methylcyclopentanone (identity not verified) with several anilines. 2,6-Diethylaniline proved to be too hindered to form a dihydrotriazine using acetone as the ketone.

The decomposition points of the dihydrotriazine hydrochlorides were normally in the vicinity of 200-220°. In two or three instances, the melting points were abnormally high, suggesting that the compounds might actually be the isomeric 6-anilinodihydrotriazines. However, an investigation of the ultraviolet spectra indicated that this was not the case; treatment with warm 0.1 N sodium hydroxide resulted in the bathochromic and hyperchromic shift which is characteristic of this type of isomerization.7 The spectrum of an anilinodihydrotriazine would not be expected to undergo a change with such relatively mild treatment.

In most cases the anilines used as the starting materials were commercially available. o-Propylaniline was prepared by the nitration of propiophenone,²³ followed by separation of the ortho isomer. The nitro group was reduced with Raney nickel in methanol, and the ketone reduced by the Wolff-Kishner method, following directions of Baker²⁴ for *m*-propylaniline. The o-propylaniline boiled at 114-116° (15 mm.).25 o-Butylaniline was prepared by the method of Read and Mullin,26 which involves nitration of butylbenzene, followed by careful fractional distillation and catalytic reduction with platinum.

⁽²²⁾ Melting points are corrected, but represent decomposition points and are not always completely reproducible. See ref. 7.

⁽²³⁾ B. L. Zenitz and W. H. Hartung, J. Org. Chem., 11, 444 (1946).
(24) B. R. Baker, R. E. Schaub, J. P. Joseph, F. J. McEvoy, and J. H.

Williams, ibid., 17, 164 (1952). (25) J. von Braun and M. Rawiez, Ber., 49, 799 (1916).

⁽²⁶⁾ R. R. Read and D. B. Mullin, J. Am. Chem. Soc., 50, 1763 (1928).

TABLE VIII ANTHELMINTIC ACTIVITY OF N¹-ARYLBIGUANIDES vs.

Syphacia Obvelata IN MICE

Compd. no.	Benzene substituents	Days treated	Dose, mg./kg. ^a	Cured/ treated	Av. % elimin- ated
XLVI	$2-C_2H_5$	3	300	0/2	38
XLVII	$2,6-(CH_8)_2$	2	300	0/2	12
XLV111	$2, 4, 5-(CH_3)_2$	3	300	0/2	61
ь	$2-CH_{3}-5-(C_{3}H_{7})-i$	3	300	0/2	29
a Ag	hydrochloride salt	5 T. SI	naniro V	A Par	rino E

^a As hydrochloride salt. ^b S. L. Shapiro, V. A. Parrino, E Rogow, and L. Freedman, J. Am. Chem. Soc., 81, 3725 (1959).

4-Amino-6-arylamino-2,2-dialkyl-1,2-dihydrotriazines.—A few of the 1-aryldihydrotriazines were isomerized by the method of Modest.⁷ New derivatives are characterized in Table II. The relative rates of isomerization of 1-(*p*-chlorophenyl)-4,6diamino-1,2- dihydro-2,2- (3- methylpentamethylene)- s- triazine (XXXVI) and the corresponding 2,2-dimethyl derivative (chloroguanide metabolite)^{3,4} were determined in 0.1 N sodium hydroxide in sealed ampoules at concentrations of 100 mg./liter. Solutions were diluted tenfold into acid buffers for spectral determinations. At 70.0-70.1°, the isomerization of the first substance was half-completed in 8 min., whereas the second required 21 min. Details of this and further kinetic experiments will be published elsewhere.

N¹-**Arylbiguanides.**—These were prepared by heating equimolar mixtures of the aniline hydrochloride and dicyandiamide in ethanol, propanol, or water for 18 hr.⁷ Upon chilling, the hydrochloride salts of the products normally precipitated, and were recrystallized from ethanol. New derivatives are found in Table III.

Procedure for Screening Compounds vs. Syphacia obvelata **Infestations in Mice.**—The mice used in these experiments were kept in individual cages. Each cage contained a feeding rack, designed to prevent food particles from falling through the wire mesh bottom of the cage, and a water bottle. Beneath each cage was a pan of water to collect the feces and worms passed by the mouse.

The weighed amount of compound was placed in a mortar, 1 to 3 drops of Tween 80 added to the mortar and the two ground together. Then water was added, a little at a time, while grinding, until the desired concentration was obtained. The resulting emulsion was used for dosing the mice. Each mouse was weighed, the required amount of the emulsion drawn up into a 1 ml. syringe, graduated in hundredths, the blunt needle inserted into the stomach through the mouth, and the contents discharged into the stomach. Then the mouse was placed in its individual cage.

Mice dosed for 3 successive days were autopsied 72 hr. after the initial dose, whereas those given a single dose were autopsied at the end of 48 hr. After 24 hr. the pan of water was removed from under the cage and a new pan of water put in its place. This procedure was repeated every 24 hr. for the duration of the experiment. The contents of a pan were poured, a little at a time, into a petri dish under a dissecting microscope and all worms counted. At the end of the experiment the mouse was killed in a chloroform jar, the cecum and large intestine removed and opened. The worms remaining were counted. Then the worms from the last 24-hr. pan were counted. For each mouse the percentage of elimination of worms was determined by dividing the number of worms passed by the total number of worms harbored. The average percentage of elimination for a group (all animals given the same dosage level of the same compound) was obtained by adding all the percentages and dividing by the number of mice in the group.

Mice were not checked for infection prior to treatment, as the majority are generally positive. Occasionally a mouse passed no worms after treatment and none was found at autopsy. These mice were not considered in the tabulations, which dealt only with mice positive for *Syphacia*. A normal worm burden found in the mice is roughly 75 to 100 pinworms. As untreated mice may pass from 0 to 28% of *Syphacia* during a 48 to 72-hr. period, these percentages are considered as normal elimination. A compound causing about 50% loss of worms would be slightly active. However, only those compounds which resulted in over 75% elimination of mouse pinworms at a dose of 300 mg./kg. were considered for further investigation. The intermediate range percentages are not at all absolute, particularly in small groups,

TABLE IX

GROWTH INHIBITORY ACTIVITY OF 1-ARYLDIHYDROTRIAZINES vs. L. casei

	vs. L. c	asei		
			Concen-	% Growth inhibi- tion in
Compd. no. or ref.	2,2-Substituents	Benzene substituents	$\frac{\text{tration}}{\gamma/\text{ml.}^a}$	L. casei ^b
Ref. 7	(CH ₃) ₂	2-Cl	100	0
Ref. 7	$(CH_3)_2$	2,5-Cl2 2,4-(CH3)2	100	0 0
1X X11	(CH3)2 (CH3)2	$2,4-(CH_3)_2$ 2,5-(CH_3)_2	$\frac{100}{100}$	0
XVI XVIII	(CH ₃) ₂ (CH ₃) ₂	2,6-(CH ₃) ₂ 2,4,5-(CH ₃) ₃	100 100	0 0
XIV	(CH ₃) ₂	2-CH3-5-Pr-i	100	0
XX XXIV	$CH_{3}, C_{2}H_{5}$ $(CH_{2})_{4}$	2,6-(CH ₈) ₂ 2-C ₂ H ₅	100 100	0 0
XXV	$-(CH_2)_5$	2-C₂H₅	100	0 0
XXVII XXXI	$-(CH_2)_{s}$ $-(CH_2)_{2}CH(CH_2)_{2}$	2,6-(CH3)2 2-CH3	100 100	-11
	 CH₂		5	0
X111	(CH ₃) ₂	2-CH₃-5-Cl	100 5	- 13 0
x	(CH3)2	2-CH3-4-Cl	100 5	$-19 \\ 0$
v	(CH ₃) ₂	2-OCH3	100 5	-15 - 16
XV	(CH ₃) ₂	2-OCH3-5-Cl	100 5	-18 -10
1	H, CH:	2-C2H5	100 5	-21 - 11
XXXVIII	$-(CH_2)_2CH(CH_2)_2-$ CH_3	2,6-(CH ₃) ₂	100 5	$-22 \\ 0$
V111	(CH ₈) ₂	2-CH3-3-Cl	100 5	- 31 0
XI	(CH ₃) ₂	2-OC H3-4-NO2	100 5	$-32 \\ 0$
Ref. 7	(CH3)2	2-CH3	100 5	- 34 0
Ref. 7	(CH ₈)?	2,4-Cl ₂	100 5	-39 0
11	(CH ₃) ₂	$2 - C_2 H_b$	100 5	- 44 0
XIX	СН3. С2Н5	2-C₂H₅	100 5	-51 - 16
1V	(CH ₃)2	2-C₄H ₉ -n	$100 \\ 5$	-53 - 20
XXI	CH3, C3H7-n	2-C2H5	100 5	-57 -19
V11	(CH ₂) ₂	2.3-(CH ₃) ₂	100 5	-72 - 12
XXII	H, C_6H_{1s} -n	2-C₂H₅	100 5	-87 0
Ref. 7		4-C1	100 5	- 95 0
XXXII	$-(CH_2)_2CH(CH_2)_2-$	2-C2H5	$\frac{100}{5}$	-95 0
XXIX		4-C1	100 5	- 96 0
Ref. 5.7	(CH ₂)4	4-Cl	100 5	-94 - 14
XXXVI	(CH ₂) ₂ CH(CH ₂) ₂ CH ₃	4-Cl	100 5	-96 - 20
Ref. 5, 7	(CH ₃) ₂	4-CH3	100 5	-88 - 64
Ref. 5	(CH _a) ²	3,4-(CH3)2	100 5	- 93 - 72
Ref. 3, 4, 5, 7	(CH ₃) ₂	4-C1	100 5	- 90 - 79
Ref. 8	H, $C_{\theta}H_{13}-n$	4-C1	100 õ 1	93 78 20
111	(CH ₂) ₂	2-C3H7-n	0.1 100 5	0 91 79
V1	$(CH_3)_2$	3-CH₃	5 100 5	-90 - 85
XX111	H. C ₉ H ¹ 9	$2 - C_2 H_5$	100 5 1	-96 - 96 + 25
Ref. 5	(C11a)2	4-OCH3	0.1 100	0 94

TABLE IX (Continued)

Compd. no. or ref.	2,2-Substituents	Benzene substitue nts	Concen- tration, ~/tid.ª	Growth inhibi- tion in L. casei ⁵
			5	- 80
			1	- 55
			0.1	0
Ref. 5, 7	(C113)2	3-C1	100	
			5	- 9 0
Ref. 3, 5, 7	$(CH_{\delta})_{2}$	3,4-Cl ₂	100	<u>90</u>
			5	90
			1	51
			0.1	D
XVII	$(C11_3)_2$	3,5-(CH3)2	1011	- 95
			5	9-4
			1	GB
			0.1	0
	1 1 1 1 1 1 1		, . ,	

" As hydrochloride salt. ^b In OFA medium which contains 0.046 mµg, of folic acid per ml.²⁷ A negative sign indicates growth inhibition, whereas a + sign indicates that the substance promotes growth.

and are only useful in showing a trend, when considered over the range of a large number of compounds.

Testing results are shown in Tables V-VIII.

The L. casei Screen.—Details of this screening procedure, which was designed for the preliminary screening of substances for activity as antagonists of nucleic acid synthesis, are described by Hitchings and co-workers.²⁷ Results are shown in Table IX.

Acknowledgments.—We are indebted to Eva Hart Gold and Linda Wright Sheehan for technical assistance in the preparation of many of the compounds described here, and for determination of their ultraviolet absorption spectra, to George R. Hunt. William

(27) G. H. Hitebings, G. B. Elion, E. A. Falco, P. B. Russell, M. B. Sheewood, and H. Vanderwerff, J. Biol. Chroc., 183, 1 (1950).

Ľ	ABLE	X

ACCTE TONICITY OF SELECTED ANYLDINYDROTRIAZINES

ACCTE I ONICITY OF SELECTED ARYLDINYDROTRIAZINES				
Compound			LD50, mg, kg."	
11.07	2.2-Substituents	substituents	L.P.	P.O.
NXXVI	$-CH_2CH_2CH_3CH_2CH_2-$	1-Ci	120	>20,000
XXXIII	$-CH_2CH_2CH_2CH_2CH_2CH_2$	2-137	70	5,000
XXXVII	$\begin{array}{c} C11_{5} \\ \rightarrow C11_{2}C11_{2}C11_{3}C11C11_{2}C11_{2} \\ \end{array}$	$4 - \mathbf{B}_{t}$	ca. 95	>1,000
XXX	CH₂CH₂CH₂CH₂CH₂CH →CH₂CH₂CHCH₂CH₂		Сл <mark>і</mark>	ca. 4,900
XXV	CH: (CH ₂) ₅	2-C2115	47	1,500
XVIII		2-3 9116 2.4.5-(CHs)s	90 90	
XXXVIII	$-CH_2CH_2CH_2CH_2CH_2$		90 56	1,180
	(11) (12) (12) (12) (12) (12) (12) (12)	2.049 (114)2		1,180
XX1X	$-CH_2CHCH_2CH_2CH_3-$	1-(1	-18	1,100
Ref. 7	(C112)3	4-01	56	1,058
XXXII	-CH2CH2CH2CH2	2-C2H5	—	$ra. \pm 000$
	$C11_3$			
Ref. 5,7	$-((11_2))_{3}$	4~C1		870
1V	$\sigma C \mathbf{H}_{3,0}$	2-C4119-n	72	800
XXI	CH3, C3H7-n	2-Calls	78	701
XXVII	(CH2)	2.0-(CH3)2	3.5	612
XX1V	(CH2)4	2-C2H5	43	435
^a As hydrochloride salt.				

G. Lillis, Allan A. Hunter. Dorothy Scarle, and Robert deSanto for assistance in the anthelmintic screening, to Samuel Singer and his staff for the microbiological data, and to P. R. W. Baker and his group at the Wellcome Research Laboratories, Beckenham, Kent, for many of the microanalyses, as well as to Samuel Blackman and his staff for microanalyses.

The Synthesis and Pharmacological Activity of Some Chloro-α-alkyltryptamines¹

B. A. WHITTLE AND F. H. P. YOUNG

Research Department, Imperial Chemical Industries Ltd., Pharmaccuticals Division.

Alderley Park, Macclesfield, Cheshire, England

Received December 14, 1962

The synthesis of eight new monochloro analogs of α -methyl- and α -ethyltryptamines are described. These compounds were prepared by condensations of 4-, 5-, 6-, and 7-chloroindole-3-aldehydes with either nitroethane or nitropropane and subsequent reduction of the condensation products with lithium aluminum hydride. The tryptamines have been found to possess stimulant and anticonvulsant properties in rodents and to produce behavioral changes in cats.

Included in a program of work,² which involved the synthesis of a series of tryptamine derivatives related to the physiologically active substance 5-hydroxy-tryptamine and their examination for biological activity on the cardiovascular and central nervous systems, were the two compounds, α -methyl- and α -ethyltryptamine. Earlier, Govier, *et al.*,³ had shown that α -ethyltryptamine was an inhibitor of tyramine oxidation and its activity as an inhibitor of the enzyme monoamine-

oxidase was confirmed in our Laboratories. α -Methyltryptamine was also found to be a more potent monoamine oxidase inhibitor than the α -ethyl homolog. Both compounds caused reversal of reservine ptosis in mice but α -methyltryptamine evoked a striking change in the behavior of the animals.⁴ An account of the pharmacology of these tryptamines has been given by Greig, *et al.*,⁵ and the efficacy of α -ethyltryptamine as an antidepressant drug in man has been

U. K. Patent Application, 20171/61.

⁽²⁾ E. H. P. Young, J. Chem. Soc., 3493 (1958).

⁽³⁾ W. M. Govice, B. G. Howes, and A. J. Gibbous, Science, 118, 596 (1953).

⁽⁴⁾ Personal communication from Dr. A. Spinks of these Laboratories who is thanked for permission to quote unpublished results.

⁽⁵⁾ M. E. Greig, R. A. Walk, and A. J. Gibbons, J. Pharmanal. Excel. Therap., 127, 110 (1959).